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Abstract— Cellular Automata (CA) have been suggested for 
Pseudo Random Sequence (PRS) generation as a new but 
characteristically different alternative to the classical 
Feedback Shift Registers (FSR). One-dimensional (1-D) as 
well (2-D) two-dimensional CAs has been used with 
remarkable success in generating PRS that have good 
statistical features. This research presents a new but 
notwithstanding remarkably simple design for PRS 
generation. The outputs of linear FSRs (LFSRs) act as 
continuous inputs or perturbations to the two extreme 
boundary cells of a 1-D CA. The results of sufficiently long 
evolutions time steps show superior randomness features as 
compared to the periodic boundary conditions classical 
approach. The output strings of such CAs under certain 
chaotic local transition rules have passed the stringent 
Diehard statistical battery of tests. The design is a viable 
candidate for parallel PRS generation, has strong 
correlation immunity, good order of asymptotic complexity 
and is inherently amenable for VLSI implementation. 
 
Index Terms — Boundary Conditions, Cellular Automata, 
Diehard Tests, Linear Feedback Shift Registers, Random 
Number Generators 
 
INTRODUCTION 
 
Both LFSRs and CAs have been used extensively in a wide 
area of applications, particularly random number generation 
for Mont Carlo simulation, communications, cryptography 
and network security [1]-[8].  LFSRs, although, are simple 
in structure and design were proven to have comparatively 
weak statistical features when utilized in the production of 
pseudo random numbers [2]. The weakness can be attributed 
to the linearity of the exclusive-or function used in the 
feedback network. Additionally, non-linear feedback shift 
registers are difficult to construct for long seed lengths and 
have their problems as well [1]. On the other hand, a 
uniform 1-D CA, where one rule is implemented throughout 
the spatiotemporal evolution of the CA, have shown unique 
and useful characteristics, and have been suggested by [3] 
and [4] and others for use in random number generation. A 
notable impediment however, is the input to the boundaries 

of the CA, when it is confined to a limited span. Hence, a 
long string of output will render the CA overly unsuitable. 
However, a shorter span implies a constant span 
lengthK and therefore a fixed and limited number of cells. 
Thus, inputs are needed to feed the two extremities of the 
CA. One approach attempted to solve this problem is to 
make the CA evolve in a continuous loop (referred to as 
autonomous or periodic), in which case the peripheral cells 
(i.e. the last and the first extreme cells) are made adjacent to 
each other. An alternative technique is to feed the peripheral 
cells with fixed inputs. Figure 1 depicts some common fixed 
boundaries from (2)GF used in the literature. 
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Figure 1. Common 1-D CA fixed boundaries.  
 
All these methods running under chaotic rule 30 on uniform 
1-D CAs have produced much shorter periods than a 
comparative LFSR and drastically failed the Diehard battery 
of tests. This paper reports the findings of a new method 
whereby a pair of uncorrelated LFSRs are used to generate 
the two boundary conditions. With this design the output 
string of the concatenated cells of the whole sufficiently 
large CA span K  evolving for a time evolution 
steps 2KT ³ , has passed the Diehard battery of tests and 
produced attractive parallelism, correlation properties, and 
strong cryptographic complexity.
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PRELIMINARIES 
 
For the purpose of this paper we will restrict our attention 
towards one dimensional cellular automaton. The cells are 
arranged on a linear finite lattice, with a symmetrical 
neighborhood of three cells and radius 1r = . Each cell takes 
its value from the set {0,1, ..., }G p= and we let 1p =  
rendering the CA binary and therefore referred to as 
Elementary Cellular Automata (ECA). All cells are updated 
synchronously and they are, therefore restricted to local 
neighborhood interaction with no predetermined global 
communication. The CA will evolve according to one 
uniform neighborhood transition function, which is a local 
function (rule) 2 1: rf G G+ a  where the CA evolves after 

certain number of time steps T. Out of a total of 
2 1rGG

+
rules 

we use rule 30 as suggested by [3] and adopt the numbering 
scheme attributed to [3] and [4]. It follows that a 1-D CA is 
a linear register of ,K K Î ¥ memory cells. Each cell is 
represented by t

kc , where k KÎ , t TÎ and  T ∈  
describes the content of memory location k  at time 
evolution stept . Since 2G =  the cell takes one of two 
states from (2)GF . This implies the applicability of Boolean 
algebra to the design over (2)GF . A minimum Boolean 
representation of Rule30 in terms of the relative 
neighborhood cells is 1

1 1( )t t t t
k k k kc c c c+

- += Å + , 
where 2 2k K£ £ -  , as depicted in figure 2. 
Furthermore, since the CA is actually a finite state machine 
then the present states of the neighborhood 

( , , )1 1
t t tc c ck k k- + of cell tck ,  at time step t  and the next 

state  1tck
+  at time step 1t + , can be analyzed by the state 

transition table and the state diagram depicted in figure. It 
can be seen from above that in order to evolve from the 
present time step t  to the next time step 1t + , each cell at 
lattice  location k  would require the present state of itself 

tck  as well as the present state of the other two cells in its 

neighborhood 1
tck−  and 1

tck+ . Therefore, if the CA is 

allowed to expand freely, left wise and right wise the total 
number of cells at each time step 1t + , say M would need 
M+2 cells at time step t . Hence, if the CA is unbounded 
then an unpractical span size of the CA would be required in 
order to accumulate a reasonable size of random numbers. 
Therefore, it is imperative that the CA has to be bounded. 
The open literature is rich with research on fixing the size of 
the CA and provides data for the extreme cells of the 
bounded CA. Figure 1 gives a brief account of some 
common fixed boundary conditions while figure 5 
categorizes the boundary conditions to include the new 
boundary condition proposed in this paper using LFSR as a 

new source for boundary conditions. The autonomous 
category refers to the common so-called periodic boundary 
conditions and makes the extreme cells of the CA adjacent, 
as illustrated in figure 6. The resultant cellular automaton 
becomes circular at a single time step but renders the whole 
CA as cylindrical. The expression for the extreme left and 
right cells at time step 1t +  are, respectively  

1
0 1 1 0( )t t t t

Kc c c c+
-= Å +  and 1

1 2 1 0( )t t t t
K K Kc c c c+

- - -= Å + . 
The miscellaneous category includes either some ad hoc 
permutation of the fixed boundaries, some fixed sequence of 
inputs or even tapping the CA at variable points along the 
span during the time evolution.  The published results of 
these different types of boundary conditions produced poor 
results when used as a source of generating random 
numbers. In this paper we are proposing a new source for the 
boundaries. We have used the well established LFSR as the 
source of inputs to the extreme cells of the fixed 1-D CA, as 
shown in figure 5. A LFSR of span N  memory cells can be 
described by the following simple recurrence equation, 

1
0 0 0 1 1 1 1
t t t t t

i i N NL a L a L a L a L+
- -Å Å Å Å= ××× ××× Where

(2)ia GFÎ . The choice of ia are exactly the coefficients of 
a primitive polynomial of degree N . The extreme cells of 
the new design at time step t+1 can now be described by 

1
1 2 0 1( )t t t t

K K Kc c L c+
- - -= Å + and 

1
0 0 0 1( )t t t tc R c c+ = Å +  
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Figure 2. Rule 30 operating on two time steps. 
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Figure 3.  State machine analysis of Rule 30. 
 
 

 
 
Figure 4. Categorization of a fixed span 1-D CA boundary 
condition sources. 
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Figure 5. Autonomous (or periodic) boundary conditions at 
time step t.

RESULTS 

In order to test the statistical properties of the new proposed 
design, we developed a research platform that encompasses 
a suite of programs emulating all known types of boundary 
conditions for wide range of spans for both the CA and the 
LFSRs, as described in figure 6.  
 

 

Figure 6. Spatiotemporal output of 1-D CA span 31-bit with 
two LFSRs as boundary inputs source of the same span. One 
hundred time steps are shown. 

Included in this platform are selections that compute outputs 
for different types of random number generators for future 
work and are not presently described in this paper. The 
snapshot shown in the figure is a spatiotemporal image for a 
run of an LFSR bounded 1-D CA running under rule 30 with 
the span length of 31K R L= = = bit and 100 time steps 
evolution, starting with a random seed. We will include 
snapshots of results obtained for representative runs on the 
Diehard battery of tests [9], which has been adopted in this 
paper due to its well established stringent requirements on 
the statistical randomness of the output string. Due to the 
restrictions imposed by this test the CA span K has to be at 
least 27-bit long evolving for a minimum of K2 time steps. 
Table 1 shows the results of running the diehard tests on the 
autonomous boundary conditions for spans 32, 33, up to 
512. The CA has not been able to pass all the tests even for a 
span of 256-bits. The results of running the diehard tests on 
the fixed boundary conditions have totally failed and 
therefore not worth reporting here. When running the CA 
using two LFSRs of span 3-bit each as the boundary 
conditions for various and increasing spans, the Diehard 
results were only marginally improved although the 
spatiotemporal image showed better randomness. It is clear 
that such boundary conditions will give better results than 
fixed boundary conditions but do not show vast 
improvement over the periodic boundary condition. 
However, when the LFSRs spans increased to 15-bits for 
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both registers some improvement became noticeable. 
Excellent results were obtained when the span of the LFSRs 
were increased to match the span of the CA. The CA has 

passed all tests with extremely superior P-values, as shown 
in table 2. 

 

CONCLUSIONS 

The string of contiguous stream data collected from the 
evolution of the 1-D CA for the center cell of various 
boundary conditions were tested by the 15 diehard battery of 
tests. The various fixed boundary conditions failed the 
diehard tests almost completely and were considered 
unworthy reporting. The autonomous boundary conditions 
have shown far better statistical properties than the fixed 
boundary conditions. However, it still falls far below the 
minimum requirements of the diehard tests for reliable 
considerations in producing dependable random numbers 
even for long spans of the CA (512-bit). When the 
boundaries were fed from LFSRs results did not improve 
significantly until the span of the LFSRs were comparable to 
that of the CA. The results steadily improved up to the upper 
bound when the two spans were comparable. It can be 
concluded that the new approach can produce random 
numbers even at modest size of the CA (i.e. 27-bit). More in 
depth study of the results show that the new approach 
produced superior p-values than the best of the autonomous 
results. Further assertion of the diehard results are also 
apparent from visual inspection of the spatiotemporal output 
as can be seen from figure 6. It is easy to expect that the 
fixed boundary conditions cause a CA running under Rule 
30, which is considered a chaotic rule and belongs to group 
III, [4] and [5], to evolve into Group I or II (i.e. point 
attractors or limit cycles with extremely small periods. 
Therefore, such boundary conditions preclude these CAs 
from achieving strong random number generators. The 
autonomous boundary conditions, on the other hand gave 
better results which is indicative of better distribution during 
CA evolution. However, the periods of this type were far 
lower than the maximum length obtainable from LFSRs. The 
proposed design has an added favorable feature when 
considering the initial seeds. It is clear that all the possible 

K2 K-tuples can be used as seeds including the all 0’s and all 
1’s that usually yield quiescent states when used with the 
periodic boundary conditions. This is not possible with any 
other known boundary conditions including the autonomous 
type. All the tests were performed using a single one as the 
initial seed. This is admittedly not the case in a practical 
situation. Some patterns were observed during the initial 
evolution of the CA but did not persist. Although these 
initial patterns did not negatively impact the diehard tests it 
was found that avoiding the use of trinomials for the LFSRs 
and replacing them with primitive polynomials of better 
distribution of the coefficients managed to remove these 

patterns. One salient feature of the design is the almost total 
destruction of the cross-correlation between different cells as 
shown in figure 7(a). The strong correlation is an inherent 
feature of LFSRs that can be observed as maximum and 
constant between any two cells of the LFSR and as linear 
patterns on the diagonal ridge between the outputs of the 
LFSR cells, figure 7(b). An immediate consequence is the 
ability to use the CA as a parallel source of pseudo random 
numbers that can be considered a strong candidate for 
parallel data compaction (signature analysis) in VLSI testing 
[8]. This is justified since the structure as depicted in figure 
8 presents a simple memory-based and inherently parallel 
design that is amenable to large scale integration. Inspection 
of rule 30 reveals that the function is surjective. Since 
reversibility implies bijection, it follows that the proposed 
system is not clear cut reversible. Hence analytical 
techniques may not be available to adequately and inversely 
describe the spatiotemporal data evolution in at most 
polynomial time. For a LFSR of span N , there are 

N(2 1)− N-tuple words as seeds. The two LFSRs are 
uncorrelated and running independently and synchronously, 
hence the effective input computational complexity from 
these registers to the CA would be N 2(2 1)− . The 1-D CA of 
span K can be initialized with a total of K2 K-tuple words as 
initial seeds. There are a total of 322 rules, which is the rule 
space of a1-D CA.  Thus the computational asymptotic 
complexity of the system is Ο

3N 2 2 K((2 1) 2 2 )− ⋅ ⋅ ≈  Ο 3K(2 )  
for K N, as compared to 2N for the LFSR and Ο K(2 )  for a 
1-D CA with autonomous boundary conditions.  
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Figure 7. Spatiotemporal images of CA and LFSR with span 
length of 28-bit (a) and correlation properties (b). 

 Table 2. Diehard tests results for CA of variable spans and 
with 2LFSRs for boundaries of the same as the CA spans. 
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Table 1. Diehard results for 1-D CA of variable spans with 
periodic boundaries.  
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