
FACILITATING HOW TO LEARN ALGORITHMS AND COMPUTER
PROGRAMMING

Osvaldo Luiz de Oliveira1

1 Osvaldo Luiz de Oliveira, Faculty of Campo Limpo Paulista - Faccamp, Rua Guatemala, 167, Jardim América, 13231-230, Campo Limpo Paulista, SP,
Brazil, osvaldo@faccamp.br.

Abstract ⎯ Computing devices are increasingly present in
everyday objects and activities, this makes computer
programming an essential issue for modern Engineering.
The importance and complexity of this issue has motivated
the research on educational methods to facilitate the
learning of this subject. However, current methods have, in
general, the following drawbacks: (1) they expect a learner
able to formulate strategies for solving problems even in
fields not know properly; (2) the used languages have
abstract primitives, distant from the concepts belonging to
the areas where the solutions are formulated. In this paper,
we present a method for learning algorithms that exposes
the student to different problems spaces, each one with its
own formal language. These problems spaces evolve
gradually: from small to large spaces, from concrete to
abstract spaces, from specific to generic language. We also
present a software developed and some results in classroom
of Engineering and Computer Science.

Index Terms ⎯ Algorithms and Programming Learning,
Computer Science Education, Engineering Education.

INTRODUCTION

There was a time when programming was used only by
engineers to automate calculations and to support the
development of projects. Nowadays, the computing devices
are present in virtually every object and every human
activity. The incorporation of computers by traditional
artifacts of modern culture, as the automobile, television,
and telephone, and the integration among computers and
physical space allowing the construction of "smart
buildings", for example, makes computer programming a
matter of great importance for Modern Engineering.

However, computer programming is a notoriously
difficult task. Researches show that the dropout rate for
students in first and second year in Computer Science
courses, due to difficulties in programming learning, is
between 30% [10] and 70% [6]. The importance and
complexity of this issue has motived the research of
educational methods to facilitate the programming learning.
The existing proposals emphasize partial aspects involved in
the learning process of the development of algorithms,
without consider the problem globally: syntactic aids [10]-
[17], simplification of IDEs [2]-[7], visualization of
programming concepts [8]-[18], emphasis on programming
on domains of practical problems [4]-[5]-[10]-[11]-[13],
didactic aspects encompassing curriculum [9], monitoring

[9], assessment [9]-[18], teacher´s feedback [7], automatic
evaluation of solutions [6]-[7], iconic notations for the
execution flow [3], assignments [15]-[16]-[19], list of
common misconceptions [14], collaborative learning [1].
However, the existing proposals do not address an
appropriate model of how the learning can take place
gradually from the most basic concepts to the most complex.

In this paper we propose a logic framework to explain
the factors that affect the programming learning. It allows
measuring the complexity of a particular knowledge domain
and of a specific programming language. Based on this logic
model, we developed different spaces of problems and
languages through which students may develop the
knowledge gradually. Finally, we show some experimental
results obtained in the classrooms of Engineering and
Computer Science and present our conclusions.

SPACE OF PROBLEMS, FORMAL PROGRAMMING
LANGUAGE, IMMEDIATE AUTOMATON,

ALGORITHM AND PROGRAMMING ENVIRONMENT

A space of problems, or problems’ domain, comprises an
area where problems can be proposed. A space of problems
includes a theme and involves objects and concepts utilized
to formulate problems. One problem describes a
proposition, a question, a task to be solved by an algorithm.
To describe the solution of a problem in a space of
problems, the student must use a formal programming
language. The programming environment includes,
among others, a set of tools used to edit, compile, run, and
debug the algorithm. As an example, an environment
configuration for programming learning, widely used, has
Mathematics as a space of problems, Pascal as a formal
programming language and the IDE of Free Pascal as a
programming environment. The configurations described
below have a key role in our proposal and will be mentioned
throughout this text.

World of Robots, Language from the World of Robots

The World of Robots is a space of problems that involves a
rectangular board representing a "World", robots that can
move around the "World" and some other objects: walls and
discs. The World of Robots induces a space of problems
linked to the movement and manipulation of objects, disks,
on a board possibly consisting of barriers formed by walls
(Figure 1-a). The Language from the World of Robots
consists on traditional flow control structures and commands

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

229

such as "GoFoward (r)", "TurnLeft (r)", "CatchDisc (r)",
"PutDisc (r)" which causes a robot named "r", respectively,
to walk one step forward, turn 90° left and pick up or place a
disc in the position where it is. Other commands allow you
to check if a robot named "r" is on a disc, "IsOnDisc (r)",
and if in front of the robot there is no wall, "FrontIsClear
(r)". Figure 1-b describes an algorithm to solve the problem
of collecting all discs in the front of the robot named "r"
until he finds a wall. The programming environment consists
on an editor that allows you to create and place robots, discs
and walls and a text editor to enter the algorithm. In
response to the request of the algorithm execution, the
programming environment displays the animation of
programmed movements.

while do
begin

if then

end

 FrontIsClear (r)

 IsOnDisc (r)
 CatchDisc (r)

GoForward (r);

(a) (b)

FIGURE 1
LEARNING ENVIRONMENT “WORLD OF ROBOTS”

Integer and Boolean Arithmetic, Simple Computer

 Assembly Language: addition, subtraction, multiplication,
division and boolean operations form the basis of this space
of problems. The formal language operates on the simple
computer model, illustrated in Figure 2-a. For simplicity, a
Simple Computer's memory has exclusive areas for data and
for the program. The data area has 64 Kbytes, addressed in
decimal numbers from 1 to 65536, again for simplicity. The
processor has two registers, named "r1" and "r2" and is
capable of receiving data from a keyboard and send data to a
numeric display. The language grammar includes the
instructions that may be performed by the Simple
Computer’s processor. Some of them are: "input" that
receives an integer from the keyboard and stores it in
register "r1"; "output" that sends the integer of the register
"r1" to the numeric display; "move" that can copy data
between the memory and registers; "add" that adds the
integers stored in registers "r1" and "r2" and places the result
in "r1". Figure 2-b presents an algorithm for the problem of
adding two integers. The programming environment
implements the editing, execution, and viewing the
algorithm operation, instruction by instruction.

(a) (b)

input
move r1, 1
input
move 1, r2
add
output

(b)

FIGURE 2
LEARNING ENVIRONMENT “INTEGER AND BOOLEAN ARITHMETIC, SIMPLE

COMPUTER ASSEMBLY LANGUAGE”

Integer and Boolean Arithmetic, Arithmetic Language

The space of problems here is the same as before. The
language we are here referring to as Arithmetic Language is
a subset of the traditional algebraic notation. So, "+", ".",
"∑" and "x" represent, respectively, the operations of
addition, multiplication, the sum of a set of terms and a
variable named "x". On a form, algebraic expressions can be
written by an editor specifically designed to facilitate the
editing of algebraic symbols (Figure 3-a). Such as manual
calculations carried out on a paper, a "virtual machine"
calculates the expressions (runs the algorithm) from top to
bottom and from left to right. The execution of the algorithm
for m = 6 and n = 4 is illustrated in Figure 3-b. Note that in
this example, the variable x has the value equal to 24 after
the first sum and 10 after the second sum. The concept of
variable in this language is different from the concept of
variable used by many traditional programming languages.
The variable x in Figure 3-b cannot be thought of as a
position of computer memory, limited to store a single value
at each time, as is the case in programming languages like
Pascal, for instance, but it has a value, after the first sum,
and another value after the second sum. The history of the
calculations and the x values are preserved in the algorithm
execution.

A formal programming language has associated to it an
immediate automaton able to perform a set of sentences
belonging to the language. The immediate automaton refers
to the "virtual machine" capable of executing the sentences
of the formal language the way they are described in the
algorithm. It is important to teach the immediate automaton
for the student, because he will develop algorithms to this
automaton, and not to the real computer. For example, in the
Language from the World of Robots the immediate
automaton should be seen as a "virtual machine" able to
command the robots to walk forward, turn left, etc., and this
is different from the set of instructions for a real computer
processor. We understand that many of the problems with

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

230

programming learning relates to the fact that the student
does not develop a suitable mental model of the "machine"
to which their algorithms are developed.

1
Σ m ;

n
x =

m = n; = ;

//

Product of by by
// successive sums.

m n

i =1
Σ i ;

n
x =

//

Sum of the first
// natural numbers.

n

1
Σm ;
n

x =

m = ;

//

Product of by by
// successive sums.

m n

i =1
Σ i ;

n
x =

//

Sum of the first
// natural numbers.

n

n = ;

(a) (b)
FIGURE 3

LEARNING ENVIRONMENT “INTEGER AND BOOLEAN ARITHMETIC,
ARITHMETIC LANGUAGE”

FACTORS THAT AFFECT THE PROGRAMMING
LEARNING

Space of problems ranges from concrete to abstract. In this
paper, we understand the concrete as a tendency to
perceptible, to the real-visible. Abstract refers to what you'll
find with a degree of independence for perceptible elements
in the world, especially visual references. Abstract is that
one considers only existing in the level of ideas, without
material basis. A space of problems tends to the concrete
when it is formed by elements keeping more direct
relationships with perceptible objects and phenomena.
Conversely, if it is made up of elements which are
abstractions, ideas, it tends to the abstract. The space of
problems of the World of Robots is more concrete than that
of Mathematics, for example, because it involves concepts
of movement that have visual references in the world. It is
easier for students to deal with concrete domains because
they generally refer to many everyday experiences,
perceived and understood, of the real world.

The size of the problems’ domain also affects the
programming learning. Space of problems with thousands of
concepts requires from the learner a cognitive effort more
than spaces with few concepts. Small problems’ domains
offer greater comfort for the development of initial
programming skills, leaving the learner to focus on the
computational field.

If the grammar and semantics of the programming
language matches the problems’ domain, offering
primitives that accurately depict the concepts of the space of
problems, then the effort of a beginner for writing
algorithms tends to be lower, because the solution strategies
and reasoning with elements from the space of problems will

be most directly expressed by the language structures.
Conversely, great effort must be done to translate/simulate
the concepts of a domain far from primitives of a
programming language. The Language from the World of
Robots presents, in its grammar/semantics, primitives such
as "GoForward" and "TurnLeft" that match the concepts to
move forward and to turn left existent in the space of
problems from the World of Robots. On the other hand, it is
more difficult to express solutions to problems from the
World of Robots using as language, for example, Pascal or
Java, since concepts such as "robot", "move forward" and so
on, would have to be translated through variables, constants,
data types, etc. As another example, consider the space of
problems from Integer and Boolean Arithmetic and the
languages that we designed to operate in this domain, whose
descriptions we made previously. The Arithmetic Language
provides primitives which match up more promptly with the
concepts in this domain than the Assembly Language from
the Simple Computer.

FIGURE 4

LEARING ENVIRONMENTS AND FACTORS THAT AFFECT PROGRAMMING
LEARNING

Integer and Boolean
Arithmetic,

Arithmetic Language

World of Robots,
Language from the

World of Robots

World of Robots,
Pascal Language

Integer and Boolean
 Arithmetic,

Simple Computer
 Assembly Language

Language

Pr
ob

le
m

s´
do

m
ai

n
co

nc
re

te
ab

st
ra

ct

near of domain far of domain

World of Robots,
Language from the

World of Robots
World of Robots,
Pascal Language

Language

P
ro

bl
em

s´
do

m
ai

n
sm

al
l

la
rg

e

small large

Mathematics,
Assembly Language

Mathematics,
Pascal Language

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

231

Professional programming languages include
productions for exceptions handling, classes declaration,
objects instantiation, threads definition, dozens of libraries,
among many other linguistic structures, which makes the
choice and concentration harder for the new student. Dealing
initially with small languages enables the learner to focus
on strategies for solving of problem and skills needed to
develop algorithms.

Offering a huge amount of tools for rapid development
of interfaces, components for different applications, support
for multiple programming languages and operating systems,
support for managing large projects and distribution of
software, professionals programming environments are
too complex to be used by programming students. For the
beginner, it is easier to use initially a development
environment specifically designed for a certain space of
problems and a formal programming language.

We present in Figure 4 a set of learning environments
and how they stand in relation to factors affecting the
programming learning.

METHODOLOGICAL APPROACH

The central idea of our proposal for an introduction course to
programming is in the exposition of the students to different
space of problems, each with its own formal language. A
sequence of spaces of problems of increasing complexity,
will allow the student the gradual assimilation of concepts.
Considering the factors that affect the programming
learning, earlier described, the learning environment should
evolve: (1) from concrete space of problems to abstract
space of problems; (2) from space of problems with small
number of concepts to large space of problems; (3) from
formal language with vocabulary and semantics matched to
the problems’ domain to generic languages formed by
primitives conceptually distant from the space of problems;
(4) from formal language with a small vocabulary to
languages with grammars containing large amounts of
productions.

In addition to this general framework, our proposal is
based on the following principles:
• Each "space of problems/formal language"

configuration must have a programming environment
that integrates specific setting facilities related to
editing, compilation, execution, debugging, and
visualization of concepts existent in the language;

• The immediate automaton and grammar of each
language must be thoroughly explained to students
through documents and oral statements;

• The student should practice writing algorithms not only
on paper. The use of computers as a means that allows
the execution of the solution should be encouraged,
creating, thus, a constructivist [12] learning laboratory.

Our proposal can be instantiated by using many

different settings of "space of problems/ formal language"

according to the educational intentions of courses. For
example, a course in Electronic Engineering may want to
instantiate a space of problems in the field of digital circuits,
while a course in Computer Science with focus on Artificial
Intelligence may want to instantiate a language of the Logic
paradigm. A possible sequence of settings could include: (1)
World of Robots, Language from the World of Robots, (2)
Integer and Boolean Arithmetic, Language of Arithmetic, (3)
Integer and Boolean Arithmetic, Assembly Language from
the Simple Computer, (4) Mathematics, Imperative High
Level Language, (5) Open Space of Problems, Language and
IDE of the Free Pascal.

RESULTS IN CLASSROOM OF ENGINEERING AND
COMPUTER SCIENCE

We experimentally investigate: (1) the students' ability to
formulate strategies to solve problems, (2) the correct use of
formal language for describing algorithms, specifically the
ability of students to use sequential structures, decision and
repetition. We use the averages from evaluations by students
from four classes of Telecommunication Engineering and
Computer Science from Faculty of Campo Limpo Paulista,
after completing the initial study of flow control structures
for algorithms. The treated group used as a learning
environment the World of Robots, while the control group
used a traditional approach based on Math problems and use
of Pascal language. Table I shows the number n of students
involved in each group, the average m and variance s² of the
students averages.

Each of the four samples showed normal distribution
according to normality criteria of D'Agostino test, and the
differences fit within the critical values of 1%. The Student
t-test was used to compare the results of each pair of
"treated/control” group. The performance of the treated
groups of Telecommunication Engineering and Computer
Science were significantly better (p < 0.01) than each of
their respective control pairs. The result indicates the
effectiveness of the World of Robots as an educational
artifact to enable the introductory learning of a formal
grammar and use of basic structures for flow control.

TABLE I

EXPERIMENTAL RESULTS

Computer Science

n m s2

23 7.1 1.4 27 5.9 2.5

28 7.6 1.2

Telecomunications
Engineering

21 6.3 2.3

n m s2
Treated Control

CONCLUSIONS AND FUTURE WORK

In this paper we present the results of the first stage of a
research that involves a didactic and pedagogic project,

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

232

software development, the experimentation and the
evaluation of a proposal to facilitate learning of algorithms
and computer programming. Our results were presented as:
(1) a logical model that explains sources of learning
difficulties for developing algorithms, (2) a proposal for a
methodology and of a method of teaching-learning for an
Introduction to Programming course; (3) experimental data
about the effectiveness of the proposal.

Statistical analysis on experimental data indicates the
effectiveness of the World of Robots in order to improve the
students performance in the learning of grammar and
semantics of a formal language and, specifically, the use of
flow control structures for algorithms. Future research will
focus on measuring the effectiveness of other "space of
problems/formal language" settings described in this paper
and in the methodology and the method of teaching and
learning described. We also intend to expand our universe of
observation in order to include classes of Introduction to
Programming from other universities.

REFERENCES
[1] Beck, L. L., Chizhik, A. W., An experimental study of cooperative

learning in CS1, ACM SIGCSE Bulletin, Vol. 40, No 1, 2008, pp. 205-
209.

[2] Burch, C., Jigsaw, a Programming Environment for Java in CS1,
Journal of Computing Sciences in Colleges, Vol. 24, No 5, 2009, pp.
37-43.

[3] Cilliers, C., Calitz, A., Greyling, J., The effect of integrating an Iconic
programming notation into CS1, ACM SIGCSE Bulletin, Vol. 37, No
3, 2005, pp. 108-112.

[4] Cooper, S., Dann, W., Pausch, R., Using Animated 3-D Graphics to
Prepare Novices for CS1, Computer Science Education, Vol. 13, No 1,
2003, pp. 3-30.

[5] Dann, W., Cooper, S., Alice 3: concrete to abstract, Communications
of the ACM, Vol. 52, No 8, 2009, pp. 27-29.

[6] García-Mateos, G., Fernández-Alemán, J. L., A course on algorithms
and data structures using on-line judging, ACM SIGCSE Bulletin,
Vol. 41, No 3, 2009, pp. 45-49.

[7] Jurado, F., Molina, A. I., Redondo, M. A., Ortega, M., Learning to
Program with COALA, a Distributed Computer Assisted
Environment, Journal of Universal Computer Science, Vol. 15, No 7,
2009, pp. 1472-1485.

[8] Klassen, M., Visual Approach for Teaching Programming Concepts,
Proceedings of the 9th International Conference on Engineering
Education, San Juan, Puerto Rico, 2006, pp. TIA 1- TIA 6.

[9] Miliszewska, I., Tan, G., Befriending Computer Programming: A
Proposed Approach to Teaching Introductory Programming, Issues in
Informing Science and Information Technology, Vol. 4, 2007, pp. 277-
289.

[10] Moskal, B., Lurie, D., Cooper, S., Evaluating the effectiveness of a
new instructional approach, Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education, Norfolk,
Virginia, USA, 2004, pp. 75-79.

[11] Mullins, P. M., Conlon, M., Engaging students in programming
fundamentals using Alice 2.0, Proceedings of the 9th ACM SIGITE
Conference on Information Technology Education, Cincinnati, OH,
USA, 2008, pp. 81-88.

[12] Papert, S., Mindstorms: Children, Computers, and Powerful Ideas,
Basic Books, 2nd, New York, NY, USA, 1993.

[13] Pattis, R., E., Karel the Robot: a gentle introduction to the art of
programming, 2ª. ed., New York, John Wiley & Sons, 1995.

[14] Sanders, K., Thomas, L., Checklists for grading object-oriented CS1
programs: concepts and misconceptions, ACM SIGCSE Bulletin, Vol.
39, No 3, 2007, pp. 166-170.

[15] Stevenson, D. E., Wagner, P. J., Developing real-world programming
assignments for CS1, ACM SIGCSE Bulletin, Vol. 38, No 3, 2006, pp.
158-162.

[16] Summet, J., Kumar, D., O'Hara, K., Walker, D., Ni, L., Blank, D.,
Balch, T., Personalizing CS1 with robots, ACM SIGCSE Bulletin,
Vol. 41, No 1, 2009, pp. 433-437.

[17] Truong, D., Bancroft, P., Roe, P., ELP - A Web Environment for
Learning to Program, Proceedings of the 19th Annual Conference of
the Australasian Society for Computers in Learning and Tertiary
Education – ASCILITE´2002, Auckland, New Zealand, 2002, pp 1-10.

[18] Villalobos, J. A., Calderon, N. A., Jiménez, C. H., Developing
programming skills by using interactive learning objects, ACM
SIGCSE Bulletin, Vol. 41, No 3, 2009, pp. 151-155.

[19] Wicentowski, R., Newhall, T., Using image processing projects to
teach CS1 topics, ACM SIGCSE Bulletin, Vol. 37, No 1, 2005, pp.
287-291.

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

233

	Página Inicial:

