
COMPUTATIONAL THINKING IN ENGINEERING

Osvaldo Luiz de Oliveira1

1 Osvaldo Luiz de Oliveira, Faculty of Campo Limpo Paulista - Faccamp, Rua Guatemala, 167, Jardim América, 13231-230, Campo Limpo Paulista, SP,
Brazil, osvaldo@faccamp.br.

Abstract ⎯ “Computational thinking” is an expression that
has been used to describe the human and machine
reasoning. Research results suggest that, like reading,
writing and calculating, which are fundamental skills every
child learns, computational thinking is a skill needed for
every person in today´s world. Computational thinking
involves, among other things, problem solving, systems
development, abstraction, and is the core of all modern
science and technology. When an engineer calculates,
develops a project or a work implementation schedule,
establishing a logical and interdependent relationship
between different activities, he is thinking computationally.
In this paper, we present the principles of computational
thinking, give examples, and discuss the challenges of
providing a computational thinking discipline to
Engineering.

Index Terms ⎯ Computing Education in Engineering,
Computational Thinking.

INTRODUCTION

The roots of the term Computing refer to calculate, count,
determine anything by calculation. The advent of computing
machines has established the need for a Computer Science to
organize and develop a body of knowledge to a wide variety
of phenomena and topics such as problem solving,
development of algorithms, design, computer programming,
theoretical models for the notion of Computing, among
many others.

In the 1960s, the increasing use of computers led many
universities to introduce concepts of computer programming
in Engineering, Physics and Mathematics, to name only a
few careers. The idea was that these professionals acquired
the ability to develop algorithms as a way to program the
computer to solve problems, such as of calculus, statistic,
mechanics, machine design and structures. Computing
disciplines taught the development of algorithms in
languages such as FORTRAN, C and Pascal.

The popularization of personal computers, during the
beginning of the 1980s, was accompanied by software for
the automation of activities such as text editing, elaboration
of spreadsheets, presentations, and specific applications for
technical and artistic drawing, Engineering projects, sound
processing, music, etc. Many universities have developed
disciplines to study the use of specialized software, such as
computer aided design, virtual electronics lab, geographic
information systems, and programs for office automation
and communication online. Although useful, these

disciplines are focused on operations, in the functionality
and use of the interface language required to interact with
the software. Fundamental Computing concepts are not
discussed in this approach.

These conceptions do not regard Computing as a basic
discipline, which concepts are widely employed as those of
Mathematics, for example. Computational Thinking is more
than to use the computer to solve problems, or execute a
routine mechanical as do computers. Computational thinking
is a fundamental human ability, related to how we solve
problems. To think computationally is more than
programming a computer, because it involves several levels
of abstraction [7] and, thus, the approaches that are focused
on programming are specialized and limited.

A Computing discipline useful for Engineering is the
one that deals with models, methods to solve problems,
development of materials, structures, machines, devices,
systems and processes that work in a coherent, logical,
intelligent, secure and robust way. In this sense, a
Computing discipline deals with ways to think like a
computer scientist. In this paper, we argue that
computational thinking is a fundamental skill for engineers,
not just for people interested in the science and practice of
Computing. In the next section we show how things of
everyday life can be seen from the computational
perspective and discuss some key concepts and methods of
Computing, illustrating how they are implicitly present in
Engineering activities. Next, we discuss some current
challenges for designing and implementing a computing
discipline for Engineering and present our conclusions.

OBSERVING THE WORLD FROM A
COMPUTATIONAL PERSPECTIVE

Computer Science is the study of what can be computed and
how it can be computed. Computational thinking includes a
variety of scientific and technological artifacts, “mental
tools” that reflect the development of Computing, and
provide the answer to many questions and the accurate
solution to problems.

Algorithms

The notion of Computing requires an algorithm. On a broad
sense, any set of instructions that properly specify a behavior
can be considered an algorithm. An algorithm is a
description of a behavioral process. It consists of a finite set
of instructions that govern the behavior step by step.
Although the algorithm notion is central to Computing, it is
not necessarily related to computers. In order to see the

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

226

world from the Computing perspective, it is necessary to
understand as algorithms the behavior of things in the world:
Objects, machines, people, plants, static and dynamic
structures. To understand a behavior as an algorithm it is
necessarily trying to imagine a set of actions that can be
executed by the object whose event is being observed.

The production of many artifacts requires the
development of algorithms not only for computers but also
for the use of people. Computing skills, whether conscious
or not, for developing algorithms, are necessary for many
Engineering activities. A project is an algorithm that
describes how a work or machine must be built. Other
examples that expose algorithms include: (1) planning the
logical relationship between the activities that make up a
work schedule, (2) the development of technical standards to
define how a test or experiment should be conducted, or
rules and features of a product or service, (3) the
development of a strategic plan that outlines goals and
objectives, (4) the writing of administrative procedures to set
up actions and responsibilities that need to be complied, in
order to make the quotation and purchase materials for a
work.

Abstraction

The concept of abstraction is fundamental to imagine, create,
understand and improve algorithms. Abstraction is the
process or the result of reducing the information content of a
concept or phenomenon, generally in order to retain only the
information that is relevant for a particular purpose. For
example, a person can be seen only by their name and
official identification number (data abstraction) and also
among the intricate set of their actions in the world, like
eating, walking (abstraction process). We can have a
hierarchy of abstractions that mainly specify the main ideas
without the intricacy of the details, which will be described
in separate modules. Abstracting is separate different
concepts, it is choosing representations for a problem or
modeling relevant aspects of a problem to make it tractable.
It also provides confidence so that we can modify large and
complex systems in a safe way, without understanding all
details. In Civil Engineering, designs of Architectural,
structural, electrical and plumbing of a building are different
abstractions of the same work. Different levels of details of
an architectural project create, for example, a hierarchy of
abstractions. Computational techniques can be used to retain
only relevant information for a certain purpose, modeling
techniques and discovery of knowledge can aid the engineer
in developing more concise and understandable projects, in
addition to help in solving problems.

Problem solving

The theoretical knowledge of Computer Science enables us
to evaluate the difficulty of solving a problem and the best
way to solve it. We can examine if an approximate solution
is good enough and if false positives or negatives are
allowed. Currently, we have a theoretical framework that

lists many of the strategies for solving problems. A group of
widely referenced general strategies includes inductive
approaches such as “divide and conquer” and “decrease and
conquer”, reductionist approaches, such as “transform and
conquer” [3], and other less general approaches as “dynamic
programming”, “brute force” and “greedy” [5]. Complex
problems of Logistic Engineering as “Vehicle Routing” or
“Traveling Salesman”, of Packaging Engineering as
“Knapsack”, problems of planning and control processes,
present in all areas of Engineering, may have their solutions
or approximate solutions found with the aid of these
strategies.

Solutions may be limited in complexity or may not exist

Different solutions can be proposed to solve the same
problem. The solutions may differ in the amount of steps
required to solve the problem (time complexity), and also at
the consumption of other resources such as memory (space
complexity). Complexity is inherent to algorithms and does
not depend on the speed of a processor, whether it is a
human being, a fast or slow computer. There are feasible
solutions to certain problems, while it would take hundreds
of thousand years to solve others, even if they are processed
by a very fast processor and good amount of memory. For
example, a solution to the classic problem of Transportation
Engineering which establishes the shortest path between two
cities (A and B) would be to generate all possible sequences
of cities starting on A and ending on B, discarding those
sequences that do not have roads connecting the cities and,
finally, choose the sequence of the shortest path. This
solution is not feasible in practice because it takes hundreds
of years to be achieved by a modern computer, even for
maps containing about 50 cities. However, we know that
there is a solution that can be achieved in a few seconds
under these conditions. There are also problems that are
believed to have no solution.

CHALLENGES IN CREATING A COMPUTATIONAL
THINKING DISCIPLINE FOR ENGINEERING

Today, Computing is widely researched and applied, taking
into account that the processor is a computer. There is little
research on the uses of Computing by people in their various
activities. Researches must be developed to understand how
people use algorithms and what algorithms are suitable for
humans. What language, or dialect, and linguistic structures
do people use in the production of artifacts including
algorithms? Architectural projects, for example, are
developed in a predominantly graphic language. How to
write precise and unambiguous architectural projects
considering such languages? Does this language require
additional linguistic structures for this purpose or a
particular project? In order to design and implement a
process to engage stakeholders from multiple sectors and
identify the computational tools and problem solving skills,

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

227

[6] has by objective to define how these skills can be
integrated into Engineering curricula.

An important issue raised by these debates is to
understand how people specify processes using natural
language. For example, specifying a process to “find a list of
employees with the job of photographer and exercising
leadership role, giving a file containing the records on
paper”. Surprising results have pointed out that people
rarely use flow control structures (if, while, etc.) common to
the formal language for describing computer algorithms [2].
How do people without programming knowledge specify an
algorithm for a task? In a recent paper, Lewandowski [4]
explore the task of selling tickets to a theatre play given the
following scenario: Multiple sellers will work at the same
time, (2) the customer will ask for “n” seats and the seller
should get the best seats available, (3) the seller must deal
with different payment options (debit card, credit card and
check). Lewandowski noted the correctness of solutions,
especially to what, in Computing jargon, we call
concurrency control, i.e., preventing the same seat from
being sold more than once. The results of Lewandowski
suggest that students think “naturally” in concurrency
control and are able to develop solutions to the task given.

The teaching of Computing for engineers should require
different methods from those used for the Computing area
students. The development of methods that work for
Engineering students will be required to answer difficult
questions such as: What do these students know about
Computing? (2) What is difficult and challenging for them?
(3) What kind of tools can make the computer thinking more
accessible to them? These issues are addressed both by
researchers in the area of Education in Engineering and
Computer Science.

CONCLUSION

The computational models and methods enable us to solve
problems and develop the design of engineering systems,
what none of us could do without such knowledge, whether
we use it consciously or not. The ability to think
computationally is important for engineers and not only for
people interested in Computing. The Game Theory [1] has
modified and expanded the boundaries of Engineering
Economics. Combinatorial Optimization is an alternative to
the solution of many complex problems of Engineering, the
“Nano Computing” and “Quantum Computing” have
changed the thinking and theories of Chemistry and Physics,
to name a few areas of knowledge. Computational thinking
is a great vision that can help people in everyday life,
students, researchers and engineers in their activities. Today,
after nearly sixty years of the advent of digital computers,
we have a strong body of knowledge on Computing for these
computing machines. Often we do not realize that
Computing is something that is beyond computers, that the
world and its beautiful phenomena can be interpreted on a
computational perspective. However, we need research on

how this can be done and we need to reorganize the
educational processes in order to understand Computing as a
basic discipline, focusing on methods, artifacts and ways of
thinking present in Computer Science, intended for
Engineering students.

REFERENCES
[1] Davis, M., D., Game Theory: A Nontechnical Introduction. Mineola,

NY, USA, Dover Publication, 1997.

[2] Guzdial, M., Paving the Way for Computational Thinking.
Communications of the ACM, Vol. 51, No 8, 2008, pp. 25-27.

[3] Levitin, A., Papalaskari, M., Using puzzles in teaching algorithms,
Proceedings of the 33rd SIGCSE technical symposium on Computer
science education, Cincinnati, Kentucky, USA, 2002, pp. 292-296.

[4] Lewandowski, G., Bouvier, D., McCartney, R., Sanders, K., Simon,
B., Commonsense Computing (episode 3): Concurrency and Concert
Tickets, Proceedings of the third international workshop on
Computing Education Research, Atlanta, Georgia, USA, 2007, pp.
133-144.

[5] Sternberg, R. J., Frensch, P. A., eds., Complex problem solving:
Principles and mechanisms, Hillsdale, NJ, USA, Lawrence Erlbaum
Associates, 1991.

[6] Vergara, C. E., Urban-Lurian, M., Dresen, C., Coxen, T., MacFarlane,
T., Aligning Computing Education with Engineering Workforce
Computational Needs: New Curricular Directions to Improve
Computational Thinking in Engineering Graduates, Proceedings of the
39th ASEE/IEEE Frontiers in Education Conference, San Antonio,
TX, USA, 2009, pp. W2H 1- W2H 6.

[7] Wing, J. M., Computational Thinking. Communications of the ACM,
Communications of the ACM, Vol. 49, No 3, 2006, pp. 33-35.

© 2010 INTERTECH March 07 - 10, 2010, Ilhéus, BRAZIL
International Conference on Engineering and Technology Education

228

	Página Inicial:

