
THE ART, SCIENCE, AND PSYCHOLOGY (ASP) OF DEBUGGING

Russell E. McMahon1,

1 Russell E. McMaon, University of Cincinnati, ML 0103, 2220 Victory Parkway, Cincinnati, Ohio 45206, russ.mcmahon@uc.edu

Abstract -- As any computer language teacher knows it
doesn’t take long before a student produces his/her first bug.
Therefore, it is not only important to teach students good
programming techniques, but also, how to debug. In a
lecture it is important that debugging is addressed early and
in a lab situation it is imperative that an instructor can
quickly debug a student’s program. A student who has no
concept of debugging will likely have a difficult time
completely homework assignments on time. A student’s
failure to successfully debug a program can also results in
the failure of the concept being adequately learned and a lot
of frustration on both the learner’s part and the teacher’s
part. Students need to understand that their own perception
of their code is as important as knowing how to code. Ideas
on how to conduct lectures, labs, homework, and tests will
be given.

Index Terms -- computer programming, debugging, problem
solving, programming

1. Introduction

Ever since Grace Hopper “debugged” the Mark II in the
1940s this term has been an integral part of computer
programming. Debugging skills are important and its
mastery is necessary for anyone who plans on a career in the
Information Technology (IT) field. Debugging is a form of
problem solving that has three aspects to it: an art, a science,
and a psychology. Grace Hopper popularized the term
“debugging” in the computing field on that fateful day in
1945 when Howard Aiken (her boss) asked her what she was
doing. Her bug was a real one, a moth to be exact[1].

If you want your students to both enjoy coding and be
successful at programming, it is important that they learn
how to debug quickly and thus, be able to concentrate on the
concept that is currently being taught. Often times, it is not
the concept that is the problem, but those “darn bugs.” I
even put together a bemusing PowerPoint slide show entitled
“Bugs come in all shapes and sizes” to try and get students
to think about what kinds of bugs they create and how to
find them.

In many ways you are a coach preparing your students
for that day when they will indeed have to debug a system
that a client needs and all eyes are focused on them. This
comes only with practice, patience, and a lot of hard work on
the teacher’s part and the students’ part.

2. Types of Bugs

Basically, there are four kinds of programming bugs:
syntactic, run-time, logic, and design. The first three need to
be taught in detail to beginning programming students.
Design bugs come later during a systems analysis and design
course.

Syntactic errors are failures to use the correct grammar
of your language and are caught immediately by the
compiler (or interpreter) or even beforehand by a
“background” syntactic checker of many modern Integrated
Development Environments (IDEs). They are usually easy
to fix and in general present the least amount of problems for
students (provided they are paying attention).

Run-time errors can be either syntactic errors not
identified by the compiler ahead of time or errors that result
in the program crashing. Performing an “illegal” operation
like division by zero or moving string data into a numeric
field are example of these. The compiler is unable to catch
these kinds of errors because the values of the variables are
unknown until run-time. These errors cause your program to
throw an exception, which a programmer may want to
handle programmatically.

Most beginning students spend their time here when it
comes to debugging. Part of the problem is that students
tend to write too much code before they test it especially, if
it compiles clean. Therefore, the instructor should also
spend more time teaching how to deal with these kinds of
bugs.

Logic errors can be from problems with the design of
the application to assumptions being made about what is
acceptable output. The algorithm used may be the wrong
one or something as simple as not testing for all the possible
values of a variable. These kinds of bugs required a good
testing plan to be put in place and are the hardest to detect
and find. Often times these are created as a result of poor
design.

Logic errors can lie dormant for a long time before they
are detected and if they are not discovered soon enough,
their output becomes they may become the accepted answer.
This is why companies need to spend a lot of time testing an
application before it goes to production (and retesting it after
it goes to production).

Logic errors are hard for many students because they
don’t take the time to verifying the results. As with the run-
time error mentality, if students get a program to run and it
looks pretty good then it is OK to turn in for credit. The best

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

1

way to teach this is to give students a completed program
and have them develop and implement a testing plan.

Design errors occur at the start of the development cycle
and a poorly designed program is doomed to failure.
However, this topic is more suited for a systems analysis
course, advanced programming techniques course, or
software engineering course. A good design does not mean
logic errors won’t exist. Testing is still a very important
aspect of enterprise development. In a beginning
programming course, design errors are not as big since most
programs written are fairly short. As a student progresses,
both testing and good design become a key aspects of the
system development life cycle.

3. Research

Recent studies indicate that programmers spend between 50
– 80% of their time on debugging. If these numbers are only
half right this would still reflect an enormous amount of time
and energy being spent on something that is obviously a
major problem with application development[2]-[3]. In a
recent study by the National Institute for Standards and
Technology (NIST) it was found that software errors cost the
US economy roughly $59.9 USD annually. This report
estimates that more than half the bugs are not found until
well into the development cycle or after the product has been
sold or put into production[4].

In his book Code Complete, Steve McConnell points
out that the industry average for code production is 8-20
lines of correct code per day. He further points out that there
are 15-50 errors per 1000 lines of delivered code. Mr.
McConnell recommends that programmers learn how to
code more defensively[5]. Since most applications go into
the millions lines of code these bugs can become an
enormous drain on the programmers supporting them and
the companies using them

Marc Eisenstadt of the Open University wrote a paper
entitled “My hairiest bug war stories.” He collected
antidotal information from programmers who related their
worse bug nightmares. What is especially interesting is the
number of programmers who inherited code from someone
else and then were expected to complete the project. Many
of these programmers complained that the bugs were there
when they got the code.[6]

In a paper entitled “The Debugging Scandal and What
to Do About It”, Henry Lieberman from MIT states
“debugging is still, as it was thirty years ago, largely a
matter of trial and error.” Part of the problem, Lieberman
contents is the “lack of attention to improving the tools for
debugging programs.”[7] There is also a lack of attention on
the instructors’ part of teaching students how to use a state-
of-the art debugging tool. Debugging is a skill that is not
normally taught instead, many students learn it on their own
(through “osmosis”).

There is currently a lot of excitement about Agile or
Extreme Programming with its approach to producing nearly

bugless production code. Emphasis is placed on shorter
development cycles and lots of ongoing testing and
debugging as the system progresses not just after the system
is finished[9].

The concepts of debugging and testing need to be
taught. Testing is not the same as debugging, but it can
show the presence of errors in the code and both skills go
hand-in-hand. Knowing one has a bug in his/her program is
a start, but it still remains for the programmer to find the bug
and correct it. At the beginning level of programming
courses, students need to be taught how test and debug their
programs and they need to understand that this is an art, a
science, and most importantly a frame of mind (psychology)
in terms of what one thinks the problem is and how one
views their own code.

A special kind of logic error is called the “Heisenbug”
name after the Heisenberg Uncertainty Principle. This kind
of bug appears in an actual test run of the program, but
disappears when run within the debugger. Sometimes it
seems to magically appear and then just as quickly
disappears. In general, if you don’t know what causes, it
you have a possible Heisenbug.

4. Art

Debugging is described as a black art or a secret art. It is
more of a creative art, which requires the practitioner to use
that creative, non-logical part of the brain to track down the
bug. The more creative part of our mind is sometimes
needed to know where to look for the bug and the
willingness to look in the exact opposite place. This form of
debugging is where hunches are sometimes the way a
programmer finally finds the bug[8].

Debugging will always be an art because of the constant
changes in computer languages prevents someone from
thoroughly knowing a language. (Many programmers joke
that if you know the language intimately, then you are three
releases behind.) When switching from one language to a
new one there is a new syntax to learn, a new set of compiler
rules, a new set of bugs, and sometimes a new paradigm
about which to learn (like going from procedure
programming to object-oriented programming). All
computer languages are different and all have a different set
of problems associated with them. Debugging SQL is
different from debugging HTML which is different from
debugging C# but, it is possible to use all three in the same
application.

Debugging is a creative art because even the best
programmer knows that sometimes what appears as the
obvious location of the bug is really just where it manifests
itself and the real bug lays somewhere else. It may even be
in the design of the application itself.

Debugging is a learned art. This means learning how to
use available tools to see what's going on in your code. This
leads to the science of debugging.

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

2

5. Science

Debugging is a science. There is a set of rules for general
debugging that follows the scientific method. A hypothesis
is formed on what the caused the error and is then tested. If
the assertion is true then the bug can be fixed quickly and
the student is able to move forward with the program.
Otherwise, the student must reformulate his/her hypothesis
and test again.

There is a methodology that can be applied in tracking
down the bug and fixing it. Back in the older days of
programming (where punched cards and GOTOs ruled the
world) there were no real easy ways to debug programs
except to use some sort of “print” method to display the
values of the variables you were interested in seeing and
doing a lot of desk-checking. Desk-checking is still a good
method to use when all else fails as it requires you to “play”
computer and really think about what it is your code is
doing.

Debugging requires good analytical skills. Students
who are good in math and science tend to be good in
debugging. Knowing where to start debugging is the
challenge. This can, however, be taught and modeled by the
teacher. Code isolation and verification is a good technique
to use when presented with a large program that does not
work. Comment out sections of code until you are able to
narrow the bug down to the offending line of code.

Teach program develop through the use of an IDE.
They are very rich in tools that make it quicker and easier to
debug. Plus, it is very likely that students would be using
such a tool on the job. You can set breakpoints, step through
your code, watch the values of your variables, and switch
over to the assembled code if you need a closer look at what
is going on.

Finally, the science of debugging requires students to
read the documentation on any errors they receive. The
documentation does not always help in explaining what the
programmer did wrong but, it can serve as a guide by telling
you what areas of your code you should check. If this is the
first time a student of mine has seen this particular error, I
expect him/her to use the help facility.

6. Psychology

Sometimes you convince yourself that what was written
cannot be wrong and therefore, the error is either elsewhere
in the code or in the system outside of your code. The error
is staring you right in the face, but you refuse to accept it.
Hence the saying: “Programmer know thy self and your
compiler.” Students need to understand that sometimes they
will make mistakes and not be able to “see” them because
they have convinced themselves that the code in question is
correct. Compilers are constantly being updated and
sometimes code that compiled cleanly under an older
version fails to recompile in the newer one.

There are three basic questions all coders should ask
themselves when they encounter a bug. What sort of errors
have I made in the past? What kinds of habits have I picked
up that lead to this bug? How can I change these habits?
Sometimes the only difference between my students and
myself is that I know what kinds of errors I can make and
the habits that lead up to this error and they don’t.

Students need to understand the psychology of
debugging because the mind can be the roadblock in the way
of successfully finishing an assigned program in a timely
manner or frustrating oneself for hours on end. Getting
students to catch their errors sooner instead of later is
important. Most of my students agree that some of the
errors they have made are because they convinced
themselves that the line of code in question or algorithm is
correct and therefore the bug must be somewhere else in the
code or that the OS, network, IDE, compiler, or some other
fluke of nature is the cause of their problem.

One needs to adjust his/her mindset when debugging.
First and foremost all programmers need to accept that they
will create bugs. This sounds simple enough, but many
people have trouble with this. Second, one must feel
comfortable enough in his/her programming skills such that
bugs can and will be found and appropriately handled.
Instilling confidence in your students is very important.
They must feel that the bugs they encounter are not
insurmountable and that with a little more persistence and
work they will solve the problem. Students can become so
convinced that something else was the cause of the error that
even when it was shown, they still wanted to defend their
invalid code. (This has happened to me a number of times.)

Remember what’s in the book is not always correct.
Most programming books are one release behind the actual
product and often times the sample code has not been
thoroughly tested. What may have worked before may not
work with a newer release of the product. Teach your
students to treat all information with caution. This is
difficult for beginning programming students because they
expect the author and instructor to be infallible experts and
they really have no way of knowing what is correct or
incorrect.

Another problem is switching to new version of a
language or to a whole new language (such as going from
Visual Basic 6 to Visual Basic.NET). Although the same
errors like dividing by zero will generate an error, the error
messages do change (sometimes for the better). (In C# it is
possible to execute unchecked code that would normally
cause an overflow error. This does not stop the code from
executing or from returning results back.)

7. Lecture

In a lecture it is important that good coding techniques be
taught. Code that is well designed, written, and structured is
less prone to bugs to begin with and is easier to debug later.
Students learn early on that I will not help them with a

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

3

programming problem if their code does not follow good
coding standards. Debugging is addressed early in my
programming courses with students being introduced to the
more common errors of the language they are learning.

Introduce bugs in small doses and give students the
opportunity to create their own bugs so they become familiar
with the error messages and what they really mean. Teach
students to fix bugs before continuing and to test their code
every step of the way. Good programming habits will carry
a student far. This includes showing them how to use the
available help facilities.

Start with an explanation on debugging by asking
students if they all know what ASSUME means. Most know
what is meant here (don’t make an ASS out of yoU and
ME). Next tell your students to stop making preconceived
ideas about what the caused the error. Many times it is this
notion that the error can’t be where it appears that causes
them problems.

Teach students how to write stub program code and then
how to enhance the various stubs as they go alone checking
each step before proceeding to the next. Have students
identify the important parts of the program and start out
small. Teach student how to desk-check. Although, this is
not as necessary as in the past, it still is useful and teaches
the students how to “think like a computer.”

Writing clean code is not so much a problem when
students have plenty of time to design/write/test/debug their
code as much as it is during a test. Many students believe
that writing pseudo-code on a test is better than nothing at
all. By pseudo-code I mean the program did not compile,
but instead of fixing the problem (because the student could
not do so) the student continues to write code pass the
problem area. (Damn the torpedoes, full speed ahead) In
some cases students do not even compile their code until
they are all done with the problem. These habits can be hard
to break, but if the rule of “no compile -- no points” is
applied, it tends to stop most students from handing in
incomplete code.

Although an IDE usually has a debugger built in it and
will help a student find the errors, this does no good if the
student fails to understand how the program is functioning in
the first place. This goes back to the psychology of
debugging. The data given back by a debugger is interpreted
by a student who may not really understand what the true
meaning of the information returned. It is critical that
students learn how to decipher the meaning correctly or else
they could easily spend more time than needed to solve the
problem.

Before sophisticated IDEs and debuggers the standard
way of checking what a piece of code does was to insert
“print” statements into the code and watch the values as the
program ran. Nowadays you can insert a breakpoint in your
code and a variable “watch” window will show the variables
you are interested in.

8. Lab

Most of our computer-related courses have an associated lab.
We feel that a lab is vital to our students’ success. Students
need practice debugging under a control environment. They
need to be shown how programming is done in lecture and
practice it in lab. This is the time where I assess a student’s
ability level. A student who is not very successful in lab is
likely to have a hard time with any homework and
subsequent tests.

Just as thought of eating an insect makes most people
squirm. I like to give my students a set of programs with
bugs and watch them “squirm.” I have built up a library of
“interesting” code for use in my labs. I give them a
document with code on it and they have to find the bugs first
via desk-checking and later verify their results on the
computer. Other times I have students work as teams and
create bugs in a program and then have another team debug
it. A little competition goes a long way.

I also like to have another student to debug someone
else’s code. This helps both students. Many times I have
seen my errors as soon as a colleague of mine came to my
cubicle to help me debug. If those two students can’t solve
the problem, I may assign a third or fourth student to the bug
before I get involved.

During lab time I walk around observing students’ work
on the computer. Occasionally, I observe a bug that a
student has created. However, I do not immediately rush to
aid the student instead, I choose to let him/her find it and fix
it. If that student later needs my help, I am often times able
to look like a magician for the speed in which I found their
bug. Of course, this doesn’t happen like this all the time so
my students know I am fallible.

A programming course without a formal lab makes
teaching a language difficult but, not impossible. Treat your
labs like a typical science lab. This is the time for students
to learn, interact with one another, and discover new things.
Students are expected to be there and do the work assigned
during that time period. Also, use the lab time to work with
individual students. At the University of Cincinnati, we use
Blackboard as a means in which students can communicate
with their classmates and post their answers.

At the College of Applied Science we have a
Programming Learning Center (PLC) where students can go
for additional help. This program was started in January
2002 and has a goal of allowing our more advanced students
to work with our any of our students who are having
problems. Our PLC techs are paid so there is an incentive
for them to delve into the problems given to them. The PLC
techs can be link with a struggling student for more one-on-
one help.

In a lab situation it is imperative that an instructor can
quickly debug a student’s program. In a beginning course a
student can become too frustrated and is then unable to
move forward. Even in an advanced programming course it
is important that the instructor can debug the program or at

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

4

least point the student in the right direction. Failure to do
this can result in the failure of the concept being adequately
learned and a lot of frustration on the student’s part.

9. Homework

A professor has less control in this situation so it
becomes even more imperative that students learn how to
design, write, debug, and test their code. A student hitting a
roadblock here can be bogged down for a long time and
frustration sets in sooner or later. Keep the list of
programming assignments reasonable and add one or two
that are very easy to write. Spend time going over possible
solutions and buggy solutions.

There are students who are very good programmers and
some who can hack their way through most any problem you
give them. By in large however, most students are not
natural born programmers and need a good foundation
before they can successfully build large applications. Both
homework and labs are the perfect time for students to
practice what they have learned.

Homework should also give the students the opportunity
to learn something new about the capabilities of the
language they are using. C# for example has extension
date/time functions, sort capability, data structures and other
functionality already built-into its extensive class libraries.
Give assignments that will allow students to learn more
about these and expand beyond what you teach or what is in
the book.

10. Testing

I generally give three tests a quarter (10-week, 3-quarter
system). The first two have a debugging part to it. I test less
on debugging as the quarter progresses, but students realize
they are responsible for being able to debug their programs.
You may need to occasionally help a student debug his/her
program during a test. Do this when the bug is something
that may not have encountered before or is too obscure to let
it impede a student’s progress. When you assist a student,
speak loud enough so other students are made aware of this
problem and can adjust accordingly.

11. Conclusion

There are plenty of articles and books on debugging in a
particular computer language and these make excellent
resources for learning language specific debugging
techniques. Debugging is a form of problem-solving. I
enjoy debugging and always have learned something new
when presented by what sometimes looks like the simplest
bug and it’s this life-long learning, that I want to impart to
my students.

Teach students how to limit their bugs by testing as they
go along. Do not reward students for coding additional code
beyond the initial bug. Give students programs with bugs

for lab and homework. Not only discuss debugging and how
it can be best achieved, but also discuss the psychology of
debugging. Students will miss bugs because they are
convinced that the area in question was correct and therefore
the bug has to exist elsewhere. Be patience with your
students. Once they become successful at debugging many
of the advance programming concepts become easier to
teach because students are now able to concentrate on them
and they no longer have to worry about the incidental bug.

12. References

[1] Annals of the History of Computing, Vol. 3, No. 3 (July 1981), pp.

285-286.

[2] University of Cambridge Department of Engineering http://www-

h.eng.cam.ac.uk/help/tpl/languages/debug/node1.html

[3] Thermo Galactic, “Debugging Array Basic Programs”,

http://www.galactic.com/Programming/articles/debugging.htm

[4] National Institute of Standards and Technology, June 28, 2002,

http://www.nist.gov/public_affairs/releases/n02-10.htm

[5] McConnell, S., Code Complete , Microsoft Press, 1993

[6] Eisenstadt, M., “My Hairiest Bug War Stories”, Communications of

the ACM, Vol 40, No 4, April, 1997, pp 30-37

[7] Lieberman, H., “The Debugging Scandal and What to Do About It”,

Communications of the ACM, Vol 40, No 4, April, 1997, pp 30-37

[8] McMahon, R., “The Art of Debugging”, Mantis Memo, Issue 4, 1988,

Cincom Systems

[9] Extreme Programming: A Gentle Introduction,

http://www.extremeprogramming.org/

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

5

http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/node1.html
http://www-h.eng.cam.ac.uk/help/tpl/languages/debug/node1.html
http://www.galactic.com/Programming/articles/debugging.htm
http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.extremeprogramming.org/

