
A SOFTWARE FOR VQ TEACHING

Amarildo Martins de Mattos1 and Carlos Alberto Ynoguti 2

)1

}N

1 Amarildo Martins de Mattos, INATEL National Institute of Telecommunications, Av. João de Camargo, 510, 37540-000, Santa Rita do Sapucaí, MG,
Brazil, amartins@inatel.br
2 Carlos Alberto Ynoguti, INATEL National Institute of Telecommunications, Av. João de Camargo, 510, 37540-000, Santa Rita do Sapucaí, MG, Brazil,
ynoguti@inatel.br

Abstract This article reports a Matlab script developed
to help students to understand the basic concepts of vector
quantization (VQ). It shows in a very intuitive way to design
and build a simple two-dimensional vector quantizer. Its
graphic interface allows a quick understanding of all the
phenomena involved in the quantization process. In
addiction, the software makes a comparison between the
exhaustive search and a tree-based search to show that the
last one has a much better performance.

Index Terms Vector quantization, block quantization,
source coding.

INTRODUCTION

Quantization and sampling are the basic steps to use the
digital technology with analog signals. For unidimensional
signals like voice or audio there is the class of scalar
quantizers which are exhaustively studied [2] and there are
several softwares for their simulation.

Vector quantization can be viewed as a generalization of
scalar quantization to the quantization of a vector, an
ordered set of real numbers. The jump from one dimension
to multiple dimensions is a major step and allows a wealth of
new ideas, concepts, techniques and applications to arise that
often have no counterpart in the simple case of scalar
quantization. While scalar quantization is used primarily for
analog-to-digital conversion, VQ is used with sophisticated
digital signal processing, where in most cases the input
signal already has some form of digital representation and
the desired output is a compressed version of the original
signal.

VQ is usually, but not exclusively, used for the purpose
of data compression. Nevertheless, there are interesting
parallels with scalar quantization and many of the structural
models and analytical and design techniques used in VQ are
natural generalizations of the scalar case.

A vector can be used to describe almost any type of
pattern such as a segment of a speech waveform or of an
image, simply by forming a vector of samples from the
waveform or image. Another example, of importance in
speech processing, arises when a set of parameters (forming
a vector) is used to represent the spectral envelope of a
speech sound. Vector quantization can be viewed as a form
of pattern recognition where an input pattern is
approximated by one of a predetermined set of standard

patterns, or in other words, the input pattern is matched with
one of a stored set of templates or codewords.

Vector quantization can also be viewed as a front end to
a variety of complicated signal processing tasks, including
classification and linear transforming. In such applications,
VQ can be viewed as a complexity reducing technique
because the reduction in bits can simplify the subsequent
computations, sometimes permitting complicated digital
signal processing to be replaced by simple table lookups.

Thus VQ is far more than a formal generalization of
scalar quantization. In the last years it has become an
important technique in speech recognition as well as in
speech and image compression, and its importance and
application are growing.

In this article, a brief explanation of the basic principles
and design methods are provided. In the sequel, a Matlab
implementation of a vector quantizer is described.

VECTOR QUANTIZATION

An N-level k-dimensional quantizer is a mapping q that
assigns to each input vector , a reproduction
vector drawn from a finite reproduction alphabet,

. The quantizer is completely described
by the reproduction alphabet (or codebook) Â, together with
the partition S S , of the input vector space
into the sets of input vectors mapping
into de i

(0 , , kx x −=x K

}..., N

}i= y

ˆ ()q=x x

{ ; 1,...,i i= =yÂ

{ , 1,i i= =

{ : ()iS q= x x
th reproduction vector (or codeword). Such

quantizers are also called block quantizers, vector
quantizers, and block source codes.

Distortion measures

We assume the distortion caused by reproducing an input
vector x by a reproduction vector x is given by a
nonnegative distortion measure . Many such
distortion measures have been proposed in the literature, and
for the sake of simplicity, we’ll use the squared error
distortion or Euclidean distance in this work. This distortion
is given by

ˆ
ˆ(,x x)d

1

2

0

ˆ(,)
k

i i
i

d x
−

=

= −∑x x x̂ (1)

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

1

Performance

Let be a real random vector described by
a cumulative distribution function . A performance
measure of a quantizer q applied to the random vector X is
given by the expected distortion

0(, , kX X −=X K 1)

)

}N

}

()XF x

 (2) (() , ()D q E d q= X X

where E denotes the expectation with respect to the
distribution of X.

Of course, the lower D(q) is, the better is the quantizer.
So, an N-level quantizer is said to be optimal (or globally
optimal) if it minimizes the expected distortion, that is, q* is
optimal if for all other quantizers having N reproduction
vectors, . A quantizer is said to be locally
optimum if D(q) is only a local minimum, that is, slight
changes in q cause an increase in distortion.

(*) ()D q D q≤

The goal of block quantizer design is to obtain an
optimal quantizer if possible and, if not so, to obtain a
locally optimal and hopefully good quantizer. Several such
algorithms have been proposed in the literature, and in this
article we will discuss the most popular of them, due to
Linde, Buzo and Gray [3], commonly referred as the LBG
algorithm. The LBG algorithm is based on the Lloyd’s
Method I [4], which will described next.

VQ DESIGN

The Loyd’s method

The Loyd’s Method I is based on the solution of the two
following problems:
• Given a quantizer q, described by a reproduction

alphabet , what is the optimum

partition ?
{ˆ , 1, ,i i= =A y K

{ }, 1, ,iS S i N= = K

• Given a partition , where the code
words must be placed so that D(q) is minimized?

{ , 1, ,iS S i N= = K

The solutions for the two problems are:

• A partition that is optimum for Â is easily constructed
by mapping each input vector x into the codevector yi
that minimizes the distortion d(x,yi), that is, by choosing
the minimum distortion or nearest-neighbor codeword
for each input.

• For a given partition S, the best location for each
codeword is the centroid or center of gravity of each set
Si.

The LBG algorithm

The LBG algorithm builds up the vector quantizer by
solving these two problems in a recursive way. The LBG
algorithm can be state as follows:

The LBG algorithm

• Initialization: Choose an arbitrary set of K code
vectors, say , 1, 2, ,k k K=x K .

• Recursion:
1. For each feature vector x in the training set,

“quantize” x into code vector *kx , where

 (** arg min , k
k

k d= x x)

)

 (3)

Here represents some distortion measure in the
feature space. In this work, the Euclidean distance, (1)
was used.

(,)d ⋅ ⋅

2. Compute the total distortion that has occurred as a
result of this quantization,

 (4) (, ()D d q= ∑ x x

where the sum is taken over all vectors x in the training
set, and q(x) indicates the codeword to which x is
assigned in the current iteration. If D is sufficiently
small, STOP.
3. For each k, compute the centroid of all vectors x

such that ()k q=x x during the present iteration.
Let this new set of centroids comprise the new
codebook, and return to Step 1.

There also exists a slight variation on the LBG method,

which differs in the way the algorithm is initialized: the
number of clusters is iteratively built up o a desired number
(power of two) by “splitting” the existing codewords at each
step and using these split codes to seed the next iteration.
This modified algorithm is shown below:

Initial guess by splitting

• Initialization: find the centroid of the entire population

of vectors. Let this be the (only) initial codevector.
• Recursion: There are a total of I iterations, where 2I

codevectors are desired. Let the iterations be i = 1, 2,
…, I. For iteration i,
1. “Split” any existing code vector, say x , into two

code vectors, say (1)+ εx and (1)− εx , where ε is
a small number, typically 0.01. This results in 2i
new code vectors, say , 1, 2, ,i i

k k =x K 2
2. For each feature vector x in the training set,

“quantize” x into code vector *kx , where

 (** arg min , k
k

k d= x x) (5)

Here represents some distortion measure in
the feature space. In this work, the Euclidean
distance, (1) was used.

(,)d ⋅ ⋅

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

2

3. For each k, compute the centroid of all vectors x
such that ()i

k q=x

i <

x during the present iteration.
Let this new set of centroids comprise the new
codebook and, if , return to Step 1. I

VECTOR QUANTIZATION

Once the vector quantizer is constructed, it’s ready for use.
There are several ways to perform vector quantization of a
input vector, and here two of them will be discussed in
details: the exhaustive search and the tree search.

Exhaustive search

The exhaustive search is the most direct and simple
encoding algorithm. For this encoding scheme, a codevector
is selected by calculating the distortion between the input
vector x and all the codevectors in the codebook. The
codevector having the minimum distortion is then selected.

Tree search

The exhaustive search outline above requires, for a
codebook of size N, N distortion evaluations to be
performed. For the squared error distortion measure, it
means that k multiplications and (k-1) additions must be
performed for each of the N codevectors. Other distortion
measures may have much higher computational demands.
Frequently the codebook size needed in applications is very
large. Furthermore, the vector rate fv is rather high in typical
communications systems and the number of distortion
calculations that must be performed per unit time, given by
Nfv, implies a very demanding computational complexity,
typically involving many millions of arithmetic operations
per second.

These considerations motivated serious study of more
efficient algorithms that yield the nearest codevector without
requiring an exhaustive search through the codebook.
Several approaches have been proposed, and here, the tree
search algorithm will be presented.

Consider the two-dimensional quantizer shown in
Figure 1. In this Figure, the six code vectors are indicated
with dots and the labeled “hyperplane” decision boundaries
(line segments) are indicated with thick lines, which separate
neighbor regions. Thin lines indicate extensions of the
hyperplane segments to help visualize the efficient coding
operation. Each decision boundary is a segment of a
hyperplane and is labeled with the letters A, B, C, … and the
two half spaces separated by each hyperplane are labeled ‘+’
and ‘-’. Next, a tree structure for an efficient successive
approximation procedure to locate an input vector will be
described.

Suppose the initial step of a search algorithm is to
compute the binary decision function for the hyperplane A.
If the input x is on the right side of A (labeled ‘+’), then code
vectors 1 and 5 are immediately eliminated as candidates for
the nearest neighbor, since they are contained entirely on the
left side of A. Similarly, code vectors 2 and 3 are eliminated

as candidates if the input is on the left side of A (‘-’).
Depending on the result of the first test, we choose one of
two new tests to perform. Thus if the input lies on the ‘+’
side of A, we then test to see on which side of the hyperplane
C it lies. If the input is on the ‘-’ side of A, we then
determine of which side of hyperplane B it lies. Each test
eliminates one or more candidate codewords from
consideration. This kind of procedure corresponds to a tree
structure for the search algorithm as shown in Figure 2.

A

B

C

D
F

G

H

I

E

K

- +

-
+

+

- E
A

B

- ++

-

+
-

-
+ -

+
-

+

+ -

1 2

3

4

5
6

+
-

FIGURE 1

A TWO-DIMENSIONAL VECTOR QUANTIZER. (AFTER GERSHO & GRAY [1]).

A

B C

D E F

H I K

+

+

+

++++

+ + +

+

1 4 2 3

4 5 1 6 3 4 4

G

E

6
FIGURE 2

TREE STRUCTURE FOR EFFICIENT NEAREST NEIGHBOR SEARCH (AFTER
GERSHO & GRAY [1]).

Note that this particular tree always leads to a final

determination of the nearest neighbor code vector after at
most 4 binary decisions. Hence, the search complexity has
been reduced from 6 distance computations to 4 scalar
product operations.

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

3

MATLAB SCRIPTS

To illustrate these concepts, three Matlab scripts were
developed, one for codebooks design, and the others for
search time evaluation. The first script implemented the
modified LBG algorithm, the second the exhaustive search
method, and the third, the tree search procedure. Next, the
script outputs are shown.

VQ design

As an illustration of the VQ design using the LBG
algorithm, let the training points be as shown in Figure 3.

Training vectors

FIGURE 3

TRAINING VECTORS FOR THE VQ DESIGN.

If a codebook with 4 codevectors is desired, it’s clear
that these codevectors should be located at positions (-3,-3),
(3,-3), (-3,3) and (3,3), as shown in Figure 4.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Desired codebook

x

y

FIGURE 4

DESIRED 4 CODEVECTORS CODEBOOK.

In the first step, only one centroid is to be calculated, as

the center of gravity of the entire set of training points. For
the points given in Figure 3, these codevector sholud be
located somewhere nearby the origin, and the output of the
program is shown in Figure 5.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
One centroid

x

y

FIGURE 5

A ONE VECTOR CODEBOOK GENERATED BY THE PROGRAM.

Next, this unique codevector should be ‘splitted’, giving
rise to two other ones. The result of the splitting procedure is
shown in Figure 6.

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Splitting

x

y

FIGURE 6

CODEBOOK AFTER SPLITTING.

The next step is to reallocate the codevectors so that a

minimum distortion codebook is achieved. After a few
iterations, the final codebook of order 2 is shown in Figure
7.

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

4

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Final codebook

x

y

FIGURE 7

FINAL CODEBOOK OF ORDER 2.

Again, the splitting procedure is applied to both the
codevectors of this codebook, yielding the configuration of
Figure 8

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Splitting

x

y

FIGURE 8

CODEBOOK OF ORDER 4 AFTER SPLITTING THE CODEVECTORS OF CODEBOOK
OF ORDER 2.

After some iterations, the algorithm leads to the final

codebook of Figure 4.

Quantization

After the design of the quantizer, it’s time to analyze the
quantization performance in terms of quantization time. For
this purpose, 10000 points were generated according to a
bidimensional uniform distribution, as shown in

The exhaustive search and tree search were then
performed, and the quantization times were 1.047 s for the

exhaustive search and 0.625 s for the tree search, showing
the effectiveness of the later method.

Test vectors

FIGURE 9

POINTS GENERATED FOR SEARCH PROCEDURES TESTS.

CONCLUSIONS

In this article a brief outline of vector quantization theory
was presented, together with a Matlab implementation of
the LBG algorithm, the exhaustive search and the tree
search, leading to a better comprehension of all phenomena
involved.

Computational simulations are a very good way to teach
because there are no ‘tricks’: the students can see the
algorithm working and easily understand the concepts
involved. As one said: ‘A picture say more than a thousand
of words’.

For the future, a better user interface is being planned,
maybe using the Graphic User Interface provided with
Matlab.

REFERENCES
[1] Gersho, A. and Gray, R. ,“Vector quantization and signal

compression”, Kluwer Academic Publishers, 1991.

[2] Jayant, N.S. and Noll, P., “Digital coding of waveforms – Principles
and applications to speech and video”, Prentice-Hall, 1984.

[3] Linde, Y., Buzo, A., Gray, R. M., “An algorithm for vector quantizer
design”. IEEE Transactions on Communications. Vol COM-28, No 1.
January, 1980, pp. 84-95.

[4] Loyd, S. P., “Least squares quantization in PCM’s”, Bell Telephone
Laboratories Paper, 1957.

[5] Deller, J. R., Hansen, J. H. L. and Proakis, J.G., “Discrete time
processing of speech signals”, IEEE Press, 2000, pp. 70-73.

© 2003 ICECE March 16 - 19, 2003, São Paulo, BRAZIL
3rd International Conference on Engineering and Computer Education

5

