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Abstract  This article reports a Matlab script developed 
to help students to understand the basic concepts of vector 
quantization (VQ). It shows in a very intuitive way to design 
and build a simple two-dimensional vector quantizer. Its 
graphic interface allows a quick understanding of all the 
phenomena involved in the quantization process. In 
addiction, the software makes a comparison between the 
exhaustive search and a tree-based search to show that the 
last one has a much better performance. 
 
Index Terms  Vector quantization, block quantization, 
source coding. 

INTRODUCTION 

Quantization and sampling are the basic steps to use the 
digital technology with analog signals. For unidimensional 
signals like voice or audio there is the class of scalar 
quantizers which are exhaustively studied [2] and there are 
several softwares for their simulation.  

Vector quantization can be viewed as a generalization of 
scalar quantization to the quantization of a vector, an 
ordered set of real numbers. The jump from one dimension 
to multiple dimensions is a major step and allows a wealth of 
new ideas, concepts, techniques and applications to arise that 
often have no counterpart in the simple case of scalar 
quantization. While scalar quantization is used primarily for 
analog-to-digital conversion, VQ is used with sophisticated 
digital signal processing, where in most cases the input 
signal already has some form of digital representation and 
the desired output is a compressed version of the original 
signal.  

VQ is usually, but not exclusively, used for the purpose 
of data compression. Nevertheless, there are interesting 
parallels with scalar quantization and many of the structural 
models and analytical and design techniques used in VQ are 
natural generalizations of the scalar case. 

A vector can be used to describe almost any type of 
pattern such as a segment of a speech waveform or of an 
image, simply by forming a vector of samples from the 
waveform or image. Another example, of importance in 
speech processing, arises when a set of parameters (forming 
a vector) is used to represent the spectral envelope of a 
speech sound. Vector quantization can be viewed as a form 
of pattern recognition where an input pattern is 
approximated by one of a predetermined set of standard 

patterns, or in other words, the input pattern is matched with 
one of a stored set of templates or codewords. 

Vector quantization can also be viewed as a front end to 
a variety of complicated signal processing tasks, including 
classification and linear transforming. In such applications, 
VQ can be viewed as a complexity reducing technique 
because the reduction in bits can simplify the subsequent 
computations, sometimes permitting complicated digital 
signal processing to be replaced by simple table lookups.  

Thus VQ is far more than a formal generalization of 
scalar quantization. In the last years it has become an 
important technique in speech recognition as well as in 
speech and image compression, and its importance and 
application are growing. 

In this article, a brief explanation of the basic principles 
and design methods are provided. In the sequel, a Matlab 
implementation of a vector quantizer is described.   

VECTOR QUANTIZATION 

An N-level k-dimensional quantizer is a mapping q that 
assigns to each input vector , a reproduction 
vector  drawn from a finite reproduction alphabet, 

. The quantizer is completely described 
by the reproduction alphabet (or codebook) Â, together with 
the partition S S , of the input vector space 
into the sets  of input vectors mapping 
into de i
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th reproduction vector (or codeword). Such 

quantizers are also called block quantizers, vector 
quantizers, and block source codes. 

Distortion measures 

We assume the distortion caused by reproducing an input 
vector x by a reproduction vector x  is given by a 
nonnegative distortion measure . Many such 
distortion measures have been proposed in the literature, and 
for the sake of simplicity, we’ll use the squared error 
distortion or Euclidean distance in this work. This distortion 
is given by 
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Performance 

Let  be a real random vector described by 
a cumulative distribution function . A performance 
measure of a quantizer q applied to the random vector X is 
given by the expected distortion 
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  (2) (( ) , ( )D q E d q=  X X

where E denotes the expectation with respect to the  
distribution of X. 

Of course, the lower D(q) is, the better is the quantizer. 
So, an N-level quantizer is said to be optimal (or globally 
optimal) if it minimizes the expected distortion, that is, q* is 
optimal if for all other quantizers having N reproduction 
vectors, . A quantizer is said to be locally 
optimum if D(q) is only a local minimum, that is, slight 
changes in q cause an increase in distortion. 

( *) ( )D q D q≤

The goal of block quantizer design is to obtain an 
optimal quantizer if possible and, if not so, to obtain a 
locally optimal and hopefully good quantizer. Several such 
algorithms have been proposed in the literature, and in this 
article we will discuss the most popular of them, due to 
Linde, Buzo and Gray [3], commonly referred as the LBG 
algorithm. The LBG algorithm is based on the Lloyd’s 
Method I [4], which will described next. 

VQ DESIGN 

The Loyd’s method 

The Loyd’s Method I is based on the solution of the two 
following problems: 
• Given a quantizer q, described by a reproduction 

alphabet , what is the optimum 

partition ? 
{ˆ , 1, ,i i= =A y K

{ }, 1, ,iS S i N= = K

• Given a partition , where the code 
words must be placed so that D(q) is minimized?  

{ , 1, ,iS S i N= = K

 
The solutions for the two problems are: 

• A partition that is optimum for Â is easily constructed 
by mapping each input vector x into the codevector yi 
that minimizes the distortion d(x,yi), that is, by choosing 
the minimum distortion or nearest-neighbor codeword 
for each input. 

• For a given partition S, the best location for each 
codeword is the centroid or center of gravity of each set 
Si. 

The LBG algorithm 

The LBG algorithm builds up the vector quantizer by 
solving these two problems in a recursive way. The LBG 
algorithm can be state as follows: 
 

The LBG algorithm 
 

• Initialization: Choose an arbitrary set of K code 
vectors, say , 1, 2, ,k k K=x K . 

• Recursion: 
1. For each feature vector x in the training set, 

“quantize” x into code vector *kx , where 

 ( ** arg min , k
k

k d= x x )

)

 (3) 

Here  represents some distortion measure in the 
feature space. In this work, the Euclidean distance, (1) 
was used. 

( , )d ⋅ ⋅

2. Compute the total distortion that has occurred as a 
result of this quantization, 

  (4) ( , ( )D d q= ∑ x x

where the sum is taken over all vectors x in the training 
set, and q(x) indicates the codeword to which x is 
assigned in the current iteration. If D is sufficiently 
small, STOP. 
3. For each k, compute the centroid of all vectors x 

such that ( )k q=x x  during the present iteration. 
Let this new set of centroids comprise the new 
codebook, and return to Step 1.  

 
There also exists a slight variation on the LBG method, 

which differs in the way the algorithm is initialized: the 
number of clusters is iteratively built up o a desired number 
(power of two) by “splitting” the existing codewords at each 
step and using these split codes to seed the next iteration. 
This modified algorithm is shown below: 

 
Initial guess by splitting 

 
• Initialization: find the centroid of the entire population 

of vectors. Let this be the (only) initial codevector. 
• Recursion: There are a total of I iterations, where 2I 

codevectors are desired. Let the iterations be i = 1, 2, 
…, I. For iteration i, 
1. “Split” any existing code vector, say x , into two 

code vectors, say (1 )+ εx  and (1 )− εx , where ε is 
a small number, typically 0.01. This results in 2i 
new code vectors, say , 1, 2, ,i i

k k =x K 2  
2. For each feature vector x in the training set, 

“quantize” x into code vector *kx , where 

 ( ** arg min , k
k

k d= x x )  (5) 

Here  represents some distortion measure in 
the feature space. In this work, the Euclidean 
distance, (1) was used. 

( , )d ⋅ ⋅
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3. For each k, compute the centroid of all vectors x 
such that ( )i

k q=x

i <

x  during the present iteration. 
Let this new set of centroids comprise the new 
codebook and, if , return to Step 1. I

VECTOR QUANTIZATION 

Once the vector quantizer is constructed, it’s ready for use. 
There are several ways to perform vector quantization of a 
input vector, and here two of them will be discussed in 
details: the exhaustive search and the tree search.  

Exhaustive search 

The exhaustive search is the most direct and simple 
encoding algorithm. For this encoding scheme, a codevector 
is selected by calculating the distortion between the input 
vector x and all the codevectors in the codebook. The 
codevector having the minimum distortion is then selected.  

Tree search 

The exhaustive search outline above requires, for a 
codebook of size N, N distortion evaluations to be 
performed. For the squared error distortion measure, it 
means that k multiplications and (k-1) additions must be 
performed for each of the N codevectors. Other distortion 
measures may have much higher computational demands. 
Frequently the codebook size needed in applications is very 
large. Furthermore, the vector rate fv is rather high in typical 
communications systems and the number of distortion 
calculations that must be performed per unit time, given by 
Nfv, implies a very demanding computational complexity, 
typically involving many millions of arithmetic operations 
per second. 

These considerations motivated serious study of more 
efficient algorithms that yield the nearest codevector without 
requiring an exhaustive search through the codebook. 
Several approaches have been proposed, and here, the tree 
search algorithm will be presented.  

Consider the two-dimensional quantizer shown in 
Figure 1. In this Figure, the six code vectors are indicated 
with dots and the labeled “hyperplane” decision boundaries 
(line segments) are indicated with thick lines, which separate 
neighbor regions. Thin lines indicate extensions of the 
hyperplane segments to help visualize the efficient coding 
operation. Each decision boundary is a segment of a 
hyperplane and is labeled with the letters A, B, C, … and the 
two half spaces separated by each hyperplane are labeled ‘+’ 
and ‘-’. Next, a tree structure for an efficient successive 
approximation procedure to locate an input vector will be 
described. 

Suppose the initial step of a search algorithm is to 
compute the binary decision function for the hyperplane A. 
If the input x is on the right side of A (labeled ‘+’), then code 
vectors 1 and 5 are immediately eliminated as candidates for 
the nearest neighbor, since they are contained entirely on the 
left side of A. Similarly, code vectors 2 and 3 are eliminated 

as candidates if the input is on the left side of A (‘-’). 
Depending on the result of the first test, we choose one of 
two new tests to perform. Thus if the input lies on the ‘+’ 
side of A, we then test to see on which side of the hyperplane 
C it lies. If the input is on the ‘-’ side of A, we then 
determine of which side of hyperplane B it lies. Each test 
eliminates one or more candidate codewords from 
consideration. This kind of procedure corresponds to a tree 
structure for the search algorithm as shown in Figure 2. 
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FIGURE 1 

A TWO-DIMENSIONAL VECTOR QUANTIZER. (AFTER GERSHO & GRAY [1]). 
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FIGURE 2 

TREE STRUCTURE FOR EFFICIENT NEAREST NEIGHBOR SEARCH  (AFTER 
GERSHO & GRAY [1]).  

 
Note that this particular tree always leads to a final 

determination of the nearest neighbor code vector after at 
most 4 binary decisions. Hence, the search complexity has 
been reduced from 6 distance computations to 4 scalar 
product operations. 
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MATLAB SCRIPTS 

To illustrate these concepts, three Matlab scripts were 
developed, one for codebooks design, and the others for 
search time evaluation. The first script implemented the 
modified LBG algorithm, the second the exhaustive search 
method, and the third, the tree search procedure. Next, the 
script outputs are shown.  

VQ design 

As an illustration of the VQ design using the LBG 
algorithm, let the training points be as shown in Figure 3. 

 
Training vectors

 
FIGURE 3 

TRAINING VECTORS FOR THE VQ DESIGN. 
 

If a codebook with 4 codevectors is desired, it’s clear 
that these codevectors should be located at positions (-3,-3), 
(3,-3), (-3,3) and (3,3), as shown in Figure 4. 
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FIGURE 4 

DESIRED 4 CODEVECTORS CODEBOOK. 

 
In the first step, only one centroid is to be calculated, as 

the center of gravity of the entire set of training points. For 
the points given in Figure 3, these codevector sholud be 
located somewhere nearby the origin, and the output of the 
program is shown in Figure 5. 
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FIGURE 5 

A ONE VECTOR CODEBOOK GENERATED BY THE PROGRAM. 
 

Next, this unique codevector should be ‘splitted’, giving 
rise to two other ones. The result of the splitting procedure is 
shown in Figure 6. 
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FIGURE 6 

CODEBOOK AFTER SPLITTING.  
 
The next step is to reallocate the codevectors so that a 

minimum distortion codebook is achieved. After a few 
iterations, the final codebook of order 2 is shown in Figure 
7.  
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FIGURE 7 

FINAL CODEBOOK OF ORDER 2. 
 

Again, the splitting procedure is applied to both the 
codevectors of this codebook, yielding the  configuration of 
Figure 8 
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FIGURE 8 

CODEBOOK OF ORDER 4 AFTER SPLITTING THE CODEVECTORS OF CODEBOOK 
OF ORDER 2. 

 
After some iterations, the algorithm leads to the final 

codebook of Figure 4. 

Quantization 

After the design of the quantizer, it’s time to analyze the 
quantization performance in terms of quantization time. For 
this purpose, 10000 points were generated according to a 
bidimensional uniform distribution, as shown in  

The exhaustive search and tree search were then 
performed, and the quantization times were 1.047 s for the 

exhaustive search and 0.625 s for the tree search, showing 
the effectiveness of the later method. 

 
Test vectors

 
FIGURE 9 

POINTS GENERATED FOR SEARCH PROCEDURES TESTS. 
 

CONCLUSIONS 

In this article a brief outline of vector quantization theory 
was presented, together with a Matlab implementation of 
the LBG algorithm, the exhaustive search and the tree 
search, leading to a better comprehension of all phenomena 
involved. 

Computational simulations are a very good way to teach 
because there are no ‘tricks’: the students can see the 
algorithm working and easily understand the concepts 
involved. As one said: ‘A picture say more than a thousand 
of words’. 

For the future, a better user interface is being planned, 
maybe using the Graphic User Interface provided with 
Matlab. 
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